Behaviour of B-N-Si under high pressure and high temperature

H. YOSHIHARA*, A. ONODERA, K. SUITO

Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

H. NAKAE[‡], Y. MATSUNAMI[§]

Research Development Corporation of Japan, Chiyoda, Tokyo 100, Japan T. HIRAI

Institute for Materials Research, Tohoku University, Aoba, Miyagi 980, Japan

The phase relations of the B-N-Si system have been studied using a quenching method up to 10 GPa and 2000~ C using a high-pressure apparatus of the octahedral anvil type. Pressuretemperature conditions for obtaining z-BN (diamond analogue of boron nitride) were delineated for turbostratic BN (t-BN), t-BN/amorphous $Si₃N₄$ and t-BN/ β -Si₃N₄. These conditions shift toward higher regimes of temperature as amorphous Si_3N_4 or β - Si_3N_4 is incorporated into t-BN. Spontaneous sintering occurring *in situ* at high pressure yields z-BN-based composite compacts.

1. Introduction

There has been rapidly growing interest in the production of composite materials in the search for new characteristics, feasibility, functions, and hence for applications. Composites are processed, in general, by reinforcing fibres, dispersion of powders, vapour deposition, implantation of ions, etc. (e.g. [1]).

We have previously reported [2] a new application of the chemical vapour deposition (CVD)/high pressure (HP) technique to the processing of z-BN (the zincblende form of boron nitride)-based composite ceramics. In that study, composites consisting of z-BN and nitrides, β -Si₃N₄ for instance, were fabricated *in situ* under pressure from amorphous B-N-Si. Because z-BN and its composites are important materials for industrial applications (e.g. [3]), a thorough understanding of the phase behaviour of the B-N-Si system under pressure is of great interest.

This work aimed to elucidate the phase behaviour of the B-N-Si system over a wide range of pressure and temperature. The turbostratic BN (t-BN), which assumes randomly oriented hexagonal networks [4], was studied first, followed by t-BN/amorphous Si_3N_4 $(a-Si, N_4)$ and t-BN/ β -Si₃N₄.

2. Experimental procedure

2.1. Starting samples

Four different samples were prepared for starting materials by chemical vapour deposition technique [5, 6]. A mixture of $BCI_3-NH_3-H_2$ was employed to prepare t-BN. To prepare t-BN/a-Si₃N₄ or t-BN/ β -Si₃N₄, SiCl₄ was incorporated into the mixture.

Vaporization was carried out under a pressure of 1.3 kPa. The samples were deposited on to a graphite substrate heated to 1400° C for t-BN and t-BN/ a-Si₃N₄ or to 1800°C for t-BN/ β -Si₃N₄. The Si₃N₄ contents, estimated from wet chemical analysis, were 3.52 or 10.6 wt% for a-Si₃N₄ and 10.6 wt% for β -Si₃ N₄, respectively.

Fig. 1 shows infrared absorption spectra for t-BN/a-Si₃N₄ and t-BN/ β -Si₃N₄. In the spectrum of

Figure 1 Infrared spectra of the starting samples. (a) t-BN/a-Si₃N₄ (3.52 wt %); (b) t-BN/a-Si₃N₄ (10.6 wt %); (c) t-BN/ β -Si₃N₄ $(10.6 \text{ wt } \%).$

^{}Present address:* Chemical Todgosei Industry Co., Minato, Nagoya 455, Japan.

SPresent address: Furukawa Electric Co., Chiyoda, Tokyo 100, Japan.

[§] Present address: Japan Metals and Chemicals Co., Tsukuba, Ibaraki 305, Japan.

Figure 2 Scanning electron micrographs of the starting samples. (a) t-BN/a-Si₃N₄ (3.52 wt %); (b) t-BN/ β -Si₃N₄ (10.6 wt %).

t-BN/a-Si₃N₄ (3.52 wt %) (Fig. 1a), strong absorption bands characteristic of t-BN [7] are observed at 1380 and 790 cm⁻¹. For t-BN/a-Si₃N₄ (10.6 wt %) (Fig. 1b), broad bands centred at 980 and 480 cm^{-1} become conspicuous, reflecting the increased amount of amorphous Si_3N_4 [8]. In the spectrum of t-BN/ β -Si₃N₄ (10.6 wt %) (Fig. 1c), absorption bands for β -Si₃N₄ (at 1040, 910, 580, 445 and 380 cm⁻¹) [8] are observed, in addition to the absorptions arising from t-BN.

Fig. 2 shows scanning electron micrographs for t-BN/a-Si₃N₄ (3.52 wt%) and t-BN/ β -Si₃N₄ $(10.6 \text{ wt } %%)$. In t-BN/a-Si₃N₄ $(3.52 \text{ wt } %%)$ (Fig. 2a), each grain contains smaller grains about $1 \mu m$ in size. In t-BN/ β -Si₃N₄ (10.6 wt %) (Fig. 2b), grains $({\sim}10 \,\mu\text{m})$ with a flaky structure are observed. Transmission electron microscopy observation of the sample has revealed that β -Si₃N₄ single crystals in sizes from 30 to 50 nm are dispersed within t-BN [9].

2.2. High-pressure treatment

Each sample prepared in Section 2.1 was pulverized and enclosed in an octahedral sample cell shown in Fig. 3. High pressure was generated in an octahedral anvil-type apparatus [10, 11]. The pressure was known from calibrations using fixed points [12, 13]. High temperature was attained by passing an alternating current through a graphite tube, which also served as a sample container. The temperature was measured using a Pt-Pt/Rh (13%) or W/Re (5%)-W/Re (26%) thermocouple. No correction was made for the effect of pressure on the e.m.f, of the thermocouples. The high temperature was held for 10 min in most cases.

Figure 3 Cross-section of an octahedral sample cell for high-pressure experiments.

2.3. Post-compression measurements

After the sample was quenched to room temperature, the pressure was released. The sample was then recovered and subjected to X-ray diffraction (XRD) analysis, SEM observation, X-ray microanalysis (XMA), and infrared absorption measurements. For sintered compacts, Vickers microhardness, H_v , was measured under a load of 4.9 N. Young's modulus was also measured using a pulse-echo overlap ultrasonic method [14]. The fracture toughness, K_{lc} [15], was obtained from microscopic observation of crack lengths at the indentation fractures.

3. Results

3.1. Phase relations

3.1.1. t-BN

Pressure-temperature conditions and phases obtained from t-BN are plotted in Fig. 4. The amounts of each phase were estimated from characteristic peaks in the powder X-ray diffraction patterns for the recovered samples. At 6 GPa, the phase obtained was solely the graphite-type BN (g-BN). At 7 GPa, z-BN appears at temperatures higher than 900° C. From Fig. 4 threshold conditions for obtaining z-BN are found to be 7 GPa and 900° C.

Fig. 5 shows X-ray diffraction patterns for the

Figure 4 Pressure-temperature conditions and phases obtained from t-BN after 10 min duration.

Figure 5 **X-ray diffraction patterns of recovered samples started with t-BN and heat-treated at 7GPa for 10min.**

samples prepared with t-BN and recovered after heat treatment at 7GPa. The sample remains t-BN at 800~ At 900~ the z-BN (1 1 1) reflection appears with a broad peak, suggesting that t-BN is directly converted into z-BN. This observation of direct conversion has been reported by Gladkaya *et al.* **[16]. On** increasing the temperature beyond 1000°C, the z-BN **(1 1 1) reflection is strengthened further.**

3.1.2. t -BN/a-Si₃N₄ (3.52 wt%)

Fig. 6 shows plots of pressure-temperature conditions and phases obtained from $t-BN/a-Si_3N_4$ (3.52 wt %). **Obviously, g-BN appears over a range wider than in the case of t-BN (Fig. 4). The threshold conditions for obtaining z-BN are 6 GPa and 1600 ~ C, or 7 GPa and** 1400 $^{\circ}$ C. A small amount of β -Si₃N₄ is observable at temperatures between 1500 and 1700°C at 7 GPa. The **temperature needed for the occurrence of** β **-Si₃N₄ is**

Figure 6 **Pressure-temperature conditions and phases obtained** from $t-BN/a-Si₃N₄$ (3.52 wt %) after 10 min duration.

reduced slightly when the pressure is raised to 8 or 10 GPa.

Figs ?a and b show X-ray diffraction patterns for the samples prepared with t -BN/a-Si₃N₄ (3.52 wt %) **and recovered after heat treatment at 7 GPa. In Fig. 7a the sample remaining t-BN below 500~ is con**verted into g-BN at 1000°C, and this g-BN grows at **higher temperatures, z-BN also begins to appear at** 1400 $^{\circ}$ C. Two reflections from β -Si₃N₄ are observed at 1500° C.

In Fig. 7b, the coexistence of g-BN and z-BN together with increased prevalence of z-BN upon consumption of g-BN is observed up to 1800°C. As **the equilibrium line between g-BN and t-BN is** approached [17], z-BN formed below 1800^o C is reconverted into g-BN and vanishes at 2000°C.

3.1.3. t-BN/a-SisN 4 (10.6wt%)

Fig. 8 shows X-ray diffraction patterns of the samples prepared with t-BN/a-Si₃N₄ (10.6 wt %) and heated at 7 GPa. The samples remain amorphous below 1500°C. Both z-BN and β -Si₃N₄ appear at 1600°C and the

Figure 7 X-ray diffraction patterns of recovered samples prepared with t-BN/a-Si₃N₄ (3.52 wt %) and heat treated at 7 GPa for 10 min. (a) Below 1500°C, (b) above 1600 °C.

Figure 8 **X-ray diffraction patterns of recovered samples prepared** with t-BN/a-Si₃ N₄ (10.6 wt %) and heat treated at 7 GPa for 10 min.

diffraction peaks of the two forms strengthen at 1700 ~ C. Formation of g-BN is minor, suggesting that z-BN is formed to a greater part directly from t-BN. The threshold temperature for the occurrence of z-BN at 7 GPa becomes higher by approximately 200~ as the amount of $a-Si_3N_4$ is increased from 3.52 to **10.6 wt** %.

3.1.4. t-BN/ β -Si₃N₄ (10.6 wt%)

Pressure-temperature conditions and phases obtained from t-BN/ β -Si₃N₄ (10.6 wt %) are plotted in Fig. 9. **The threshold conditions for z-BN formation are 1300~ C at 7GPa, or 1400~ C at 6GPa. The amount of z-BN formed under these conditions is small. The** inherent β -Si₃N₄, contained as 10.6 wt % in the starting **sample, appears over the entire range studied. At pressures above 8GPa, z-BN is obviously formed directly from t-BN, without the formation of g-BN.**

Fig. 10 shows X-ray diffraction patterns of the samples prepared with t-BN/ β -Si₃N₄ (10.6 wt %) and **recovered after heat treatment at 7 GPa. The sample** retains t-BN below 1200°C. At 1400°C, conversion of **t-BN into g-BN takes place, concurrently with the appearance of z-BN. As the temperature is raised further, the amount of g-BN decreases whereas z-BN becomes prevalent.**

Figure 9 **Pressure-temperature conditions and phases obtained** from t -BN/ β -Si₃N₄ (10.6 wt %) after 10 min duration.

Figure 10 **X-ray diffraction patterns of recovered samples prepared** with t-BN/ β -Si₃N₄ (10.6 wt %) and heat treated at 7 GPa for 10 min.

3.2. Reaction boundaries

Fig. 11 shows pressure-temperature boundaries for obtaining z-BN from various starting materials by amounts higher than 50%. Lines A, C and E are from previous reports; A from amorphous BN (a-BN) [18], C from incompletely crystallized g-BN [19] and E from well-crystallized g-BN [20]. Lines B, D and F are from this study; B from t-BN, D from t-BN/a-Si₃N₄ (3.52 wt\%) and F from t-BN/ β -Si₃N₄ (10.6 wt %). Also shown in Fig. 11 is the thermodynamically calcu**lated equilibrium between g-BN and z-BN [17].**

Examination of lines B, D and F in Fig. 11 clarifies that the incorporation of $\mathrm{Si}_3\mathrm{N}_4$ into t-BN, in the form of either a-Si₃N₄ or β -Si₃N₄, thrusts the reaction **boundary towards a higher temperature regime. Lines D and F are located close to each other and also to line E, although the slope of line D is negative relative to the pressure coordinate. Thus, the conditions for z-BN formation become similar to those for wellcrystallized g-BN [20].**

Figure ll **Pressure-temperature boundaries for forming z-BN from various starting samples: (A) From a-BN** [18], (B) **from t-BN,** (C) from incompletely crystallized g-BN [19], (D) from $t-BN/a-Si₃N₄$ (3.52 wt %), (E) **from well-crystallized g-BN** [20], (F) **from t-BN/** β -Si₃N₄ (10.6 wt %). (-..-) Thermodynamically calculated equi**librium between g-BN and z-BN.**

Figure 12 **Time-resolved X-ray diffraction patterns for t-BN/** a-Si₃N₄ (3.52 wt %) at 7 GPa and 1400°C.

3.3. Kinetics

Fig. 12 shows time-resolved X-ray diffraction patterns for t-BN/a-Si₃N₄ (3.52 wt %). The sample was held at **7GPa and 1400~ After each prolonged time, the sample was recovered and X-rayed. Within 1 min the sample undergoes formation ofg-BN from t-BN. The g-BN (0 0 2) reflection is very strong and sharp. Also, two reflections, (1 01) and (1 02), from g-BN, each** arising from three-dimensional order, appear at 43.9° and 50.2°. The prolongation of time virtually does not **alter the g-BN diffraction pattern, indicating that the formation of g-BN is completed within 1 min. On the** other hand, the z-BN (1 1 1) reflection appears at 43.1[°] **only after 10min, which shows that the formation of**

Figure 13 **Time-resolved X-ray diffraction patterns for t-BN/ fl-Si3N 4** (10.6wt %) **with 7GPa and** 1400~

Figure 14 Change of the crystallite size of $(- - -)$ t-BN and g-BN, and $($ \rightarrow $)$ z-BN obtained from three different starting samples at **various pressures: (●) 10 GPa, (▲) 8 GPa, (○) 7 GPa, (△) 6 GPa.**

z-BN from t-BN/a-Si₃N₄ (3.52 wt %) proceeds rather slowly at 7 GPa and 1400°C.

Fig. 13 shows time-resolved X-ray diffraction patterns for t-BN/ β **-Si₃N₄ (10.6 wt %) also at 7 GPa and 1400~ C. During the early stages, 0.5 and 1 min, essentially no change occurs in the diffraction patterns. After 2min, the g-BN (002) peak appears. This g-BN peak becomes strengthened after 5min, while the z-BN (1 1 1) peak also appears. No reflections from the g-BN (1 0 1) and (1 02) appear, suggesting that the g-BN formed remains incompletely crystallized.**

3.4. Crystallite size

Fig. 14 shows the change of crystallite size of g-BN (or **t-BN) and z-BN as a function of temperature at various pressures. The sizes of the crystals were estimated from the characteristic peaks in the X-ray diffraction patterns using Scherrer's equation (e.g. [21]).**

The crystallite size of g-BN (or t-BN) remarkably increases with temperature at 6GPa but remains unaltered at 7 and 8 GPa when t-BN is used as the starting material (dashed lines in the top section in Fig. 14). From t-BN/a-Si₃N₄ (3.52 wt %), the crystallite **sizes of g-BN (t-BN) become saturated above 1400~ C at pressures from 6 to 8GPa (dashed lines in the** middle section in Fig. 14). The growth of g-BN (t-BN) crystals from t-BN/ β -Si₃N₄ (10.6 wt %) is slower; the **sizes after saturation are smaller (dashed lines in the bottom section in Fig. 14).**

At 7 and 8 GPa, z-BN crystals from t-BN begins to grow at about 900 ~ C, but the size remains rather small (solid lines in the top section in Fig. 14). From t-BN/ a-Si₃N₄ (3.52 wt%), z-BN crystals are already large **in size even at the threshold temperature for their appearance and do not exhibit further growth at higher** temperatures (solid lines in the middle section in Fig. 14). This virtual saturation in crystal growth is more clearly demonstrated by the z-BN formation from t-BN/ β -Si₃N₄ (10.6 wt %) (solid lines in the bottom section in Fig. 14).

It should be noted that the crystallite size exhibits maxima at 6 or 7 GPa for z-BN from t-BN/a-Si₃N₄ $(3.52 \text{ wt } %%)$ and at 6 to 8 GPa for z-BN from t-BN/ β -Si₃N₄ (10.6 wt %). It should also be noted that the z-BN crystallite size grown from both t-BN/a-Si₃N₄ $(3.52 \text{ wt } %%)$ and t-BN/ β -Si₃ N₄ (10.6 wt %) is the smallest at 10GPa, the highest pressure studied in this work. The occurrence of a maximum and the decrease in the crystallite size relative to pressure are in accord with our suggestions put forward in a previous paper [21.

3.5. Infrared **spectra**

Fig. 15 compares i.r. spectrum of the sample recovered from 8 GPa and 1700° C with that of the starting t-BN/ β -Si₃N₄ (10.6 wt %). The strong bands centred at 1400 and 800 cm^{-1} in the spectrum of the starting material have vanished after the high pressure-high temperature treatment. Instead, a band centred at 1100 cm^{-1} appears in the high-pressure product. This band is ascribed to z-BN [22].

In Fig. 15, the bands arising from β -Si₃N₄ contained in the starting material are all observable in the highpressure product, indicating again that the inherent β -Si₃ N₄ remains unchanged in structure after the high pressure-high temperature treatment. A band grows at 460 cm^{-1} . This, together with the new band centred at 600 cm^{-1} , have not yet been identified.

3.6. Mechanical properties

Some of the recovered samples were obtained as wellsintered compacts. The sintering took place through the formation of z-BN; it also occurs spontaneously *in situ* under pressure. XMA on the sintered compacts revealed a homogeneous distribution of β -Si₃N₄ among z-BN crystals. The sintered compacts are thus z-BNbased composites containing β -Si₃N₄, whether inherent or those crystallized from the amorphous state.

Figure 15 Infrared spectra for t-BN/ β -Si₃N₄ (10.6 wt %).

Table I lists Vickers microhardness for such sintered compacts. Relevant hardness data for some other compacts [2, 23-29] are also listed. In this study the highest hardness is given by the compact from t-BN/ β -Si₃N₄ (10.6 wt %) sintered at 10 GPa and 1600°C. All the compacts from t-BN/ β -Si₃N₄ (10.6 wt %) constitute the upper bound for the microhardness of all BN-based composite compacts.

Table II gives Young's modulus and fracture toughness of the composite compact sintered at 8 GPa and 1600° C from t-BN/ β -Si₃N₄ (10.6 wt %). Also shown in Table II for comparison are data from some typical ceramics [22, 30, 31]. The composite compact from this study gives a Young's modulus between those of z-BN and β -Si₃N₄ and a fracture toughness close to those of β -Si₃N₄, Al₂O₃ and SiC.

4. Discussion

4.1. Phase behaviour

Four different samples have been studied in this work. Each sample yields z-BN after high pressure-high temperature treatments, g-BN and β -Si₃N₄ are also formed, depending on the samples. The occurrence of these phases at 7 GPa from the four samples is sum-

TAB LE I Microhardness for sintered compacts of z-BN and related ceramics

Starting sample	High-pressure treatment			Microhardness	Reference
	Pressure (GPa)	Temperature $(^{\circ}C)$	Time (min)	H_v or H_k (GPa)	
t-BN/ β -Si ₃ N ₄ (10.6 wt %)	10	1600	10	$49 \sim 60$	Present work
	8	1700	10	$46 \sim 57$	Present work
	8	1600	10	$45 \sim 56$	Present work
t-BN/a-Si ₃ N ₄ $(3.52 \text{ wt } \%)$	8	2200	10	$23 \sim 30$	Present work
a-BN/a-Si ₃ N ₄ (54.1 wt %)	7	2200	10	$29 \sim 40$	$[2]$
		1800	10	$30 \sim 38$	$[2]$
	6	2000	10	$32 \sim 47$	$[2]$
$g-BN + AIN$	5.5	1600	15	45	[23]
$w-BN + a-Si_1N_4$	6.3	1500	15	$30 \sim 40$	[24]
	~ 6.5	\sim 1700			
$z-BN + TiC/TiN + Al$	5.8	1450	20	34	$[25]$
$g-BN$	6	1450	15	$60 \sim 70$	$[26]$
$w-BN$	6.7	1450	15	$65 \sim 76$	[27, 28]
		\sim 1600			

TABLE II Young's modulus, E, and fracture toughness, K_{IC} of some ceramics

Material	E(GPa)	$K_{\rm IC}$ (MPa m ^{1/2})	Reference
z-BN/ β -Si ₃ N ₄	570	> 5.5	Present work
z-BN	700		Calculated from elastic constants data in $[22]$
β -Si ₃ N ₄	300	6	[30]
Al_2O_3	400	5	[30]
SiC ¹	400	4	F301
Partially stabilized ZrO ₂	210	9	[31]

marized in Table III in terms of the threshold temperatures obtained from Figs 4, 6, 8 and 9.

In Table III, the major effects of incorporating $Si₃N₄$ in t-BN are seen to be two-fold. First, it induces g-BN formation which otherwise does not occur in pure t-BN at 7 GPa. An increase in the incorporated amount of a-Si₃N₄ gives rise to an increase in the threshold temperature for the g-BN formation. For 10.6 wt % Si_3N_4 , incorporation of the β -form rather than the amorphous yields a lower threshold temperature. Second, the incorporation causes an upward shift of the threshold temperature for z-BN formation. The shift relative to the amounts and forms of Si_3N_4 exhibits a rough correspondence to the g-BN formation.

These two effects may be simply accounted for by an expansion of interplanar spacings in t-BN caused by the incorporation of $Si₃N₄$. The direct g-BN to z-BN conversion becomes retarded by this expansion and instead the metastable g-BN appears as an intermediate. The higher amount of Si_3N_4 results in a larger expansion and hence a stronger retardation. Incorporation of the crystalline form, β -Si₃N₄, however, minimizes the amount of expansion and consequently the retardation is prevented to some extent.

In Table III, the formation of β -Si₃N₄ from a-Si₃N₄ occurs approximately at the same temperatures for the z-BN formation. The formation of z-BN is, in this case, from g-BN (or t-BN) and hence is associated with a break of the hexagonal layered bonds followed by reconstruction into the tetrahedral configuration in the zincblende structure. Upon the crystallization of a-Si₃ N₄, the non-molecular random network [8] turns into the planar configuration [8] in β -Si₃ N₄. Although z-BN differs from β -Si₃N₄ in the configuration, the formation of the two phases is similar in that they are associated with a relatively large rearrangement of bonds and volume reduction as well. The two formations can then be cooperative with each other, and hence the z-BN formation may trigger the β -Si₃N₄

TABLE III Threshold temperatures for the formation of g-BN, z-BN and β -Si₃ N₄ at 7 GPa

Starting sample	Threshold temperature $(^{\circ}C)$			
	g-BN	$z-BN$	β -Si ₂ N ₄	
t -BN		900	Not included	
t-BN/a-Si ₃ N ₄ (3.52 wt %)	1000	1400	1500	
t-BN/a-Si ₃ N ₄ (10.6 wt %)	1600	1600	1600	
t-BN/ β -Si ₃ N ₄ (10.6 wt %)	1300	1300	Inherent	

formation and vice versa, possibly leading to a concurrence of z-BN and β -Si₃N₄ at the same temperature.

Because of the concurrent formation of z-BN and β -Si₃N₄, there might occur an exchange of bondings between the two species, producing new bonds, for instance B-Si. This is supported, in part, by the appearance of the unknown peak at an angle 32.7° in the X-ray diffraction pattern (Fig. 7) of the highpressure products from t-BN/a-Si₃N₄ (3.52 wt %). This peak was also observed in most of the highpressure products from t-BN/a-Si₃N₄ (10.6 wt %). The 32.7° peak, corresponding to an interplanar spacing of 0.275 nm, is the second strongest reflection of $B₄Si$ [32]. The strongest reflection of B_4Si , from the spacing of 0.267 nm is, however, eventually disturbed by the β -Si₃N₄ (101) peak, and hence formation of B₄Si cannot be fully evinced.

The formation of g-BN is competitive with z-BN formation, as is known from the kinetic data. In Fig. 12, g-BN is formed quite rapidly and well crystallized, while the formation of z-BN is slow from t-BN/ a-Si₃N₄ (3.52 wt %). By contrast, from t-BN/ β -Si₃N₄ $(10.6 \text{ wt } %%)$ (Fig. 13) z-BN formation is rather rapid and instead the g-BN formed is incompletely crystallized. These facts and the data from t-BN/a-Si₃N₄ $(10.6 \text{ wt } %%)$ (Fig. 8) indicate that the higher amount in $Si₃N₄$, whether amorphous or crystalline, enhances z-BN formation when in competition with g-BN formation.

The crystallization of a- $Si₃N₄$ incorporated into t-BN occurs only in the β -form. No α -Si₃N₄ is observed over the entire range of pressure-temperature studied for the two samples with different a- $Si₃N₄$ contents. Because the densities of the two crystalline forms of Si_3N_4 are the same [33], any factor(s) other than the density must govern the dominant formation of β -Si₃N₄. In fact, Shimada *et al.* [34, 35] observed α -Si₃N₄ formation below about 1500°C at pressures between 1.5 and 6 GPa and attributed the predominance of the phases to an impurity effect [35]. However, Prochazka and Rocco reported a dominant formation of β -Si₃N₄ from various kinds of a-Si₃N₄ at 5 GPa and above 1500° C [29]. Thus, temperature is also a factor governing the dominance of the phases; lower temperature for α -form and higher temperature for β -form. Because the crystallization of $a-Si_3N_4$ is concurrent with the z-BN formation as mentioned earlier, no crystalline form of Si_3N_4 could appear below 1400 $^{\circ}$ C, the lowest temperature for the concurrence of z-BN and β -Si₃ N₄ (Table III). At temperatures higher than this, the crystallization of $a-Si₃N₄$ must occur in the β -form because of the higher temperature.

The wurtzitic form of BN (w-BN) is as dense as z-BN [36], yet no w-BN is formed in any of the samples studied here. The formation of w-BN has been reported to occur specifically from well-crystallized g-BN [20, 37, 38]. Also, the rhombohedral form of BN [39] and amorphous BN [18] can form w-BN. A conversion of w-BN into z-BN upon heating under pressure has been unanimously observed [20, 38-40]. The prevalence of z-BN over w-BN under high pressure-high temperature conditions is therefore similar to that of the β -form over the α -form in Si₃N₄.

4.2. Sintered composites

The composite compacts obtained from t-BN/ β -Si₃N₄ (10.6wt%) exhibit high values of microhardness (Table I) as well as of fracture toughness. The inherent β -Si₃N₄ precludes the volume reduction which otherwise is associated with the crystallization from the amorphous state. The volume reduction can sometimes cause cracks between the sintered grains and weakens the compacts sintered. The inherent β -Si₃N₄ **is** more favourable for enhancing the mechanical properties of the compacts.

The higher microhardness for the 10 GPa compact compared to the 8 GPa compacts from t-BN/ β -Si₃N₄ $(10.6 \text{ wt } %%)$ (Table I) can be accounted for by higher densification due to the higher pressure. In addition, the crystallite size of z-BN decreases with increasing pressure while there is essentially no change in the size with increase of temperature (Fig. 14). The higher microhardness of the 10 GPa compact can, therefore, also be ascribed to the smaller size of the z-BN crystallites composing the compact.

5. Conclusions

Incorporation of $Si₃N₄$ into t-BN pushes the temperatures needed for the occurrence of z-BN toward higher regimes by approximately 400° C or more at 7 GPa. The form of $Si₃N₄$ governs, to some extent, the formation of z-BN and correspondingly of g-BN. Upon heating t-BN at 7 GPa, z-BN is formed directly. Likewise, in the case of t-BN/a-Si₃N₄ (10.6 wt %), the z-BN formation is primarily by a direct path from t-BN. Formation of z-BN via g-BN proceeds in t-BN/ a-Si₃N₄ (3.52 wt %) and in t-BN/ β -Si₃N₄ (10.6 wt %).

The crystallite sizes of z-BN, in the order of 10 nm, exhibit maxima at 6 or 7 GPa and then decrease at higher pressures. The sizes of z-BN crystals grown from $Si_3 N_4$ -bearing t-BN show little change with temperature after their appearance at 1500 or 1600° C.

Composite compacts are obtained through spontaneous sintering at high pressure-high temperature. Some mechanical properties are measured specifically for the compacts obtained from t-BN/ β -Si₃N₄ (10.6 wt %): Vickers microhardness as high as 60 GPa. Young's modulus of 570 GPa, and fracture toughness higher than 5.5 MPa $m^{1/2}$.

Acknowledgements

This work was supported in part by the Development Corporation of Japan under the programme for ERATO. We thank Professor T. Masumoto for supervision, Dr J. Umemura and Ms E. Okamura for help with the infrared measurements and Mr T. Ashida for the SEM observation.

References

- 1. "Frontiers in Materials Technologies", edited by M.A. Meyers and O. T. Inal (Elsevier, Amsterdam, 1985).
- 2. A. ONODERA, N. TAKAHASHI, H. YOSHIHARA, H. NAKAE, Y. MATSUNAMI and T. HIRAI, *J. Mater. Sci.* 25 (1990) in press.
- 3. R. H. WENTORF Jr., R.C. DeVRIES and F.P. BUNDY, *Science* 208 (1980) 873.
- 4. J. THOMAS Jr, N. E. WESTON and T. E. O'CONNER, *J. Amer. Chem. Soc.* 84 (1963) 4619.
- 5. T. MATSUDA, H. NAKAE and T. HIRAI, *J. Mater. Sci.* 21 (1986) 649.
- 6. H. NAKAE, Y. MATSUNAMI, N. UNO, T. MATSUDA and T. HIRAI, in "Proceedings of the 5th European Conference on Chemical Vapour Deposition", edited by J.-O. Carlsson and J. Lindström, (Uppsala University, Uppsala, 1985) p. 242.
- 7. M. J. RAND and J. F. ROBERTS, *J. Electrochem. Soc.* 115 (1968) 428.
- 8. N. WADA, S. A. SOLIN, J. WONG and S. PRO-CHAZKA, J. *Noncryst. Solids* 43 (1981) 7.
- 9. H. NAKAE, Y. MATSUNAMI and T. HIRAI, unpublished.
- 10. N. KAWAI, M. TOGAYA and A. ONODERA, *Proc. Jpn. Acad.* 47 (1974) 623.
- lh A. ONODERA, *High Temp. High Press.* 19 (1987) 579.
- 12. A. OHTANI, S. MIZUKAMI, M. KATAYAMA, A. ONODERA and N. KAWAI, *Jpn. J. Appl. Phys.* 16 (1977) 1843.
- 13. A. ONODERA and A. OHTANI, *J. Appl. Phys.* 51 (1980) 2581.
- 14. S. SASAKURA, K. SUITO and H. FUJISAWA, in "High Pressure Science and Technology", Vol. 2, edited by N. V. Novikov (Naukova Dumka, Kiev, 1989) p. 60.
- 15. K. NIIHARA, R. MORENA and D. P. H. HASSEL-MAN, *J. Mater. Sci. Left.* 1 (1982) 13.
- 16. I. S. GLADKAYA, G. N. KREMKOVA and V. N. SLESAREV, *J. Less-Common Metals* 117 (1986) 241.
- 17. N. N. SIROTA and N. A. KOFMAN, *Soy. Phys. Doklady* 24 (1979) I001.
- 18. H. SUMIYA, T. ISEKI and A. ONODERA, *Mater. Res. Bull.* **18** (1983) 1203.
19. K. ICHINOSE.
- M. WAKASUKI, T. AOKI and Y. MAEDA, in "Proceedings of the 4th International Conference on High Pressure", edited by J. Osugi (Physicochemical Society of Japan, Kyoto, 1974) p. 436.
- 20. A. ONODERA, H. SUMIYA, N. TAKAHASHI, K. HIGASHI, R. OHSHIMA, H. SAKA, K. NOBUGAI and F. KANAMARU, in preparation.
- 21. B. D. CULLITY, "Elements of X-ray Diffraction" (Addison-Wesley, Reading, 1956).
- 22. R. C. DeVRIES, "Cubic Boron Nitride: Handbook of Properties", GE Technical Report 72CRD178 (1972).
- 23. S. HIRANO, S. HON and S. NAKA, in "High Pressure Science and Industry", edited by C.-M. Backman, T. Johannisson and L. Tegnér (Arkitektkopia, Uppsala, 1982) p. 376.
- 24. E. RAPOPORT, K. SATO and S. SAWAOKA, *ibid.,* p. 384.
- 25. B. K. AGARWALA, B. P. SINGH and S. K. SINGHAL, *J. Mater. Sci.* 7 (1986) 1765.
- 26. M. WAKATSUKI, K. ICHINOSE and T. AOKI, *Mater, Res. Bull.* 7 (1972) 999.
- 27. A. SAWAOKA, S. SAITO and M. ARAKI, in "High Pressure Science and Technology", Vol. 1, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York, 1979) p. 986.
- 28. S. SAITO and A. SAWAOKA, in "High Pressure Science and Technology", Vol. 2, edited by B. Vodar and Ph. Marteau (Pergamon, London, 1981) p. 541.
- 29. S. PROCHAZKA and W. A. ROCCO, *High Temp. High Press.* 10 (1978) 87.
- 30. W. POMPE, H. A. BARI, G. GILLE, W. KREHER, B. SCULTRICH and H.-J. WEISS, in "Current Topics in Material Science", Vol. 12, edited by E. Kaldis (Elsevier, Amsterdam, 1985) Ch. 4.
- 31. J. T. NEIL, *Mater. Engng* March (1984) 36.
- 32. V. I. MATKOVICH, *Acta Crystallogr.* 13 (1960) 679.
- 33. D. HARDE and K. H. JACK, *Nature* 160 (1957) 332.
- 34. M. SHIMADA, N. OGAWA, M. KOIZUMI, DACHILLE and R. ROY, *Amer. Ceram. Soc. Bull.* 58 (1979) 519.
- 35. T. YAMADA, T. TANAKA, M. SHIMADA and M. KOIZUMI, *J. Mater. Sci. Lett.* 1 (1982) 455.
- 36. F. P. BUNDY and R. H. WENTORF Jr, *J. Chem. Phys.* 38 (1963) 1144.
- 37. M. WAKATSUKI and K. ICHINOSE, in "Proceedings of the 4th International Conference on High Pressure", edited by J. Osugi (Physicochemical Society of Japan, Kyoto, 1974) p. 44l.
- 38. I. N. FRANTSEVICH, T. R. BALAN, A. V. BOCHKO, G. G. KARYUK, KURDYUMOV and A. U. PILYANKEVICH, *Dokl. Akad. Nauk SSSR* 218 (1974) 591.
- 39. A. ONODERA, K. INOUE, H. YOSHIHARA,

H. NAKAE, T. MATSUDA and T. HIRAI, *J. Mater. Sei.* 25 (1990) in press.

40. F. R. CORRIGAN and F. P. BUNDY, *J. Chem. Phys.* 63 (1975) 3812.

Received 31 May and accepted 23 October 1989